Infrared and Raman Spectroscopy: Principles and Spectral InterpretationElsevier, 13 juil. 2011  230 pages Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation, sampling methods, quantitative analysis, origin of group frequencies and qualitative interpretation using generalized Infrared (IR) and Raman spectra. An extensive use of graphics is used to describe the basic principles of vibrational spectroscopy and the origins of group frequencies, with over 100 fully interpreted FTIR and FTRaman spectra included and indexed to the relevant qualitative interpretation chapter. A final chapter with forty four unknown spectra and with a corresponding answer key is included to test the readers understanding. Tables of frequencies (peaks) for both infrared and Raman spectra are provided at key points in the book and will act as a useful reference resource for those involve interpreting spectra. This book provides a solid introduction to vibrational spectroscopy with an emphasis placed upon developing critical interpretation skills. Ideal for those using and analyzing IR and Raman spectra in their laboratories as well as those using the techniques in the field.

À l'intérieur du livre
Résultats 15 sur 28
... oscillators (with the exception of the cumulated double bonds). The actual vibrations of molecules are often more ... oscillation for the ball and spring model was through coupling to an eccentric variable speed motor which enabled ...
... oscillator, the Cartesian coordinate displacements of each atom plotted as a function of time is a sinusoidal wave. The relative vibrational amplitudes may differ in either magnitude or direction. Figure 2.4 shows the normal mode of ...
... oscillator varies periodically as a sine (or cosine) function. In the above diatomic system, although each mass ... oscillator is assumed to be harmonic. photon cycle FIGURE 2.8 The oscillating electric field of the. 2. BASIC PRINCIPLES ...
... oscillator is a function of 1. the force constant K, which is a function of the bond energy of a two atom bond (see Table 2.1) 2. the atomic masses of ... OSCILLATOR Vibrational spectroscopy relies heavily on CLASSICAL HARMONIC OSCILLATOR 11.
... oscillator. In the case of the harmonic potential these states are equidis tant and have energy levels E given by Ei 1⁄4 yiþ12 hv yi 1⁄4 0;1;2. Here, n is the classical vibrational frequency of the oscillator and y is a quantum number ...
Table des matières
1  
7  
27  
Chapter 4 Environmental Dependence of Vibrational Spectra  55 
Chapter 5 Origin of Group Frequencies  63 
Characteristic Group Frequencies  73 
Chapter 7 General Outline and Strategies for IR and Raman Spectral Interpretation  117 
Chapter 8 Illustrated IR and Raman Spectra Demonstrating Important Functional Groups  135 
Chapter 9 Unknown IR and Raman Spectra  177 
Appendix IR Correlation Charts  213 
Index  217 
Autres éditions  Tout afficher
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation Peter Larkin Aucun aperçu disponible  2017 
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation Peter J. Larkin Aucun aperçu disponible  2011 