Images de page
PDF
ePub

The germ cells reach their full development in special sex glands, the ova in the ovaries of the female and the spermatozoa in the testes of the male.

After the descendants of the primitive germ cells have increased, by ordinary

[blocks in formation]

Fig. 9.-SCHEMA OF TAE DEVELOPMENTAL HISTORY OF THE MATURE OVUM.

[blocks in formation]

cell division, to a number which is probably fixed and unchangeable, but which is not definitely known, they begin to increase in size, that is, they enter a period of growth, and at this time the female germ cells are called oocytes of the first order, oocytes I, and the male germ cells are called spermatocytes of the first order, spermatocytes I.

Both the oocytes I and the spermatocytes I possess all the essential

parts of a typical animal cell, and, in addition, each has special peculiarities which differentiate it both from the germ-cells of the opposite sex and also from ordinary animal cells. Therefore the oocyte and the spermatocyte must be considered separately; but before this is done it must be noted that each oocyte I and each spermatocyte I is capable of producing only four descendants. The mitotic cell divisions by which the descendants are produced are called the maturation divisions, and they result, in the case of the oocyte, in the formation of one large functional cell—the mature ovum, and three small impotent cells—the polar bodies; whilst in the case of the spermatocyte the four descendants are of equal size and each becomes transformed into a presumably potent spermatozoon.

THE OVUM.

5

[ocr errors]
[ocr errors]
[ocr errors]

An ovum presents all the characteristic structural features of an animal cell, but it is peculiar on account of its relatively large size, the large size of its nucleus, and the possession of an investing membrane, the oolemma. As the young ova or oocytes of the first order enter upon their period of growth, each is enclosed by a single layer of special cells, the stratum granulosum, which constitute, together with the oocyte, a primary ovarian follicle (0.T. Graafian follicle). The cells of the 4 stratum granulosum multiply rapidly until they form a layer, several cells thick. 3. At the same time, the oocyte increases in size and becomes surrounded by the membrane, called the colemma, which intervenes between it and the innermost cells of the stratum granulosum.

Whilst the growth of the oocyte and the thickening of the colemma are still proceeding, a fluid-filled cavity appears in the stratum granulosum. Whether the

000600 cavity is due to the imbibition of fluid or to the dehiscence of the cells of the stratum granulosum is still uncertain, but,

Fig. 11.—THE OVUM AND ITS COVERINGS ;

(Diagrammatic). after its appearance, the cavity with its

The corona radiata, which completely surrounds the surrounding walls and the enclosed oocyte

ovum, is only represented in the lower part of is spoken of as a vesicular ovarian follicle. the figure. The cavity of the vesicular follicle gradu- 1. Corona radiata. 5. Vitellus or Yolk.

6. Nucleus (germinal vesicle). ally increases, and, as it grows, it separates 3. Vitelline membrane. 7. Nucleolus (germinal spot). the oocyte and the cells of the stratum 4. Oolemma (zona pellucida). 8. Nuclear membrane. granulosum immediately around the oocyte from the remainder of the cells of the stratum, except in a small area where the two parts of the stratum granulosum still remain in direct continuity. When this condition is attained the cells of the stratum granulosum which immediately surround the colemma are spoken of as the ovular cumulus ; they enclose the oocyte, and, together with it, they form a bold promontory which projects into the cavity of the follicle.

When its full growth is attained each oocyte I is a comparatively large cell, which measures 2004 in diameter. It consists of a cell body which is surrounded by a definite enclosing membrane, the colemma, and it contains (1) a nucleus, (2) a centrosome, (3) numerous granules called deutoplasmic or yolk granules, and (4) mitochondria.

The Oolemma.—The limiting membrane or oolemma is also called the zona pellucida, on account of its appearance under low magnifying powers, and the zona striata, because, under certain conditions, radial striae are seen in it when it is highly magnified. It is a strong, elastic membrane, which not only protects the pocyte from pressure, but probably also prevents the impregnated oocyte or zygote

[graphic]
[ocr errors]

from coming into close contact with the maternal tissues until it has attained the proper stage of development.

The exact origin of the oolemma is unknown. It must be formed either by the action of the cells of the stratum granulosum, or by the action of the oocyte, or by Oolemma

interaction between the two; but, up to the Nucleus

present, opinions regarding the origin are

divided. Chromatic substance in

It is stated that processes of the cells of skein form

the ovular cumulus pass through the oolemma, showing four segments

forming the radial striae,and become continu(real number of segments

ous with or lie in close association with the is 24)

protoplasm of the oocyte; and it is probable either that the processes are used as pabulum by the growing oocyte, or that they transmit nutritive material to the oocyte.

The Body of the Ovum. — The cell body,

originally called the yolk, consists of spongioFig. 12.-SCHEMA OF MATURATION OF OVUM, Early Part of PROPHASE OF First Division: plasm and hyaloplasm.

The Deutoplasm.—The deutoplasm conOolemma

sists of a number of more or less highly Nucleus

refractile granules, of varying size, which are Chromosome

embedded in the cytoplasm. They are largest in size and are most closely aggregated together in the region around the nucleus, where they form a definite deutoplasmic zone. But in the human ovum and in the ova of the majority of mammals, as contrasted with the ova of birds, reptiles, and amphibia, the amount of deutoplasm is relatively small; and for this reason the human ovum is

classified as oligolecithal, the term telolecithal Fig. 13.—Schema or Maturation of Ovum in being applied to ova in which the deutoplasm

PROPHASE OF First Division. The chromatic is present in considerable amount, as in the thread has divided into twin chromosomes. ova of the frog; whilst the ova of birds, Each twin may be assumed to consist of a maternal and a paternal part.

many reptiles, and the monotremes amongst mammals, in which the deutoplasm greatly

preponderates over the cell protoplasm, are Achromatic spindle Twin chromo

termed eu telolecithal.

The deutoplasmic granules are believed to serve as a store of nutritive material which is utilised during the early stage of the growth of the zygote, during which they disappear. (See note 2, p. 79.)

The Nucleus. - The nucleus, formerly called the germinal vesicle, is a spherical vesicle of comparatively large size; its diameter, which measures 50j, being one

fourth of the diameter of the oocyte. It Fig. 14.-SCHEMA OF MATURATION OF OVUM AT usually lies excentrically in the cytoplasm.

END OF PROPHASE OF FIRST DIVISION. The Its constituent parts are a nuclear memtwin chromosomes lie at the equator of the brane, surrounding the karyoplasm, which achromatic spindle.

is separable, as in ordinary animal cells, into (1) an achromatic reticulum, the linin; (2) chromatic substance, which is embedded in or closely connected with the strands of the linin; and (3) the nuclear juice, which fills the meshes of the reticulum; and it contains usually one, but sometimes several nucleoli.

The Centrosome.—The centrosome is not always very evident. It is usually present during the growth stage of the oocyte, and it disappears when the first maturation division commences. It may contain one or two centrioles, and it

[graphic]
[graphic]

Oolemma

[graphic]

Oolemma

Polar bud with chro

mosomes

lies in the region of the larger deutoplasmic granules by which its presence is frequently obscured.

The Mitochondria. These minute particles can be demonstrated by suitable methods of fixation and staining.

The Maturation of the Ovum.—The process of maturation consists of two mitotic divisions, of which the first is heterotypical, and results in the reduction of the number of chromosomes, and the second is

Achromatic spindle

Twin chromohomotypical. The phenomena of the two divisions differ in some of their details from those of ordinary cell divisions, therefore a

separation of

paternal and short account of them is necessary.

maternal parts In the prophase of the first maturation division, the centrosome, the nucleolus, and the nucleus vanish, and an achromatic spindle appears at one pole of the oocyte, where it lies, at first, parallel with the surface; and the chromosomes are gathered around its equator. The number of the chromosomes Fig. 15. —SCHEMA OF MATURATION OF OVUM IN is only half the typical number, and they

METAPHASE OF FIRST DIVISION. One pole of

the spindle projects into the first polar bud, are probably twin chromosomes (p. 11). and the maternal and paternal parts of the There are no centrosomes at the poles of the chromosomes are separating from each other. spindle. After a short time the spindle

Oolemma rotates until it lies at right angles to its original position, and one pole, surrounded

Achromatic by a small amount of the cytoplasm, forms spindle a projection, the first polar projection, on the surface of the oocyte (Fig. 14).

During the metaphase the twin chromosomes divide. In the anaphase the daughter chromosomes travel to the opposite poles of the spindle, and at the end of the anaphase one-half of the daughter chromosomes lies

Chromosomes in the first polar projection and the other

oocyte II half in the body of the oocyte (Fig. 16).

In the telophase the first polar projection Fig. 16.—SCHEMA OF MATURATION OF Ovum At is separated from the body of the oocyte and

END OF THE ANAPHASE OF THE FIRST Divi

SION. Two chromosomes (paternal or maternal) oocyte I ceases to exist, being converted

lie in the first polar bud and two in the larger into an oocyte of the second order, or oocyte part of the ovum which becomes oocyte II. II, and the first polar body, each of which

Second polar bud contains half the typical number of chromosomes.

First polar body The second maturation division occurs without the intervention of a resting stage, Chromosomes of i.e. without the reappearance of a nucleus oocyte II in oocyte II.. A new achromatic spindle appears with the daughter chromosomes at its equator; it rotates, and one pole, sur- Achromatic rounded by a small amount of cytoplasm,

spindle projects on the surface of the oocyte as the second polar projection (Fig. 17). In the metaphase the daughter chromosomes divide homotypically into equal parts, and during Fig. 17.-Schema of Maturation OF OVUM AT

THE COMMENCEMENT OF THE METAPHASE OF the anaphase the grand-daughter chromo

THE SECOND DIVISION. somes move towards the poles of the spindle, one-half entering the second polar projection and the other half remaining in the body of the oocyte. During the telophase the second polar projection is separated as the second polar body and the larger remaining part of the oocyte II becomes the mature ovum (Figs. 17 and 18).

[graphic]
[graphic]

which remain in

Oolemma

Oolemma

mature ovum

the oocyte.

Simultaneously with the division of the oocyte II into the second polar body and the mature ovum, the first polar body may divide into two parts. When that occurs four cells are present within the colemma at the end of the maturation, i.e. the relatively large mature ovum and the three polar bodies (Fig. 19).

The details of the maturation of the human ovum are unknown, and the above account is based upon the phenomena which occur in other mammals. In mammals two polar bodies are invariably formed, but in many the first does not divide into two parts simultaneously with the formation of the second. The significance of the differences which occur is not at present fully understood.

Each of the four descendants of the oocyte I contains half the typical number of Second polar bud with chromosomes

chromosomes, and those in the mature ovum Chromosomes of second polar bud

soon become enclosed in a new-formed

nucleus, which is called the female pronucleus. First polar body

When the process of maturation is comAchromatic

pleted, the mature ovum differs from a spindle

typical animal cell, inasmuch as it probably possesses no centrosome and its nucleus contains the chromatic substance of only half

the typical number of chromosomes. Chromosomes

The first maturation division always which remain in

occurs whilst the oocyte is still in the ovary and before the spermatozoon has entered

it. The second division takes place in the Fig. 18. —SCHEMA OF MATURATION OF Ovum at upper or middle part of the uterine tube, and

The chromosomes of oocyte II have separated always after the spermatozoon has entered into equal parts which have passed to the opposite poles of the spindle.

If the mature ovum does not meet with

a spermatozoon it passes through the genital Second polar body Parts of first polar body

passages and is cast off and lost; or it

breaks down, whilst still in the genital pasParts of first polar body

sages, into a detritus which disappears; but Oolemma

if it meets and unites with a spermatozoon a zygote is formed, from which a new individual may arise, and in that case the polar bodies persist until the zygote has undergone one or two divisions; but sooner or later they

disappear, probably breaking down into fragFemale pro

ments which are absorbed by the cells of the nucleus in mature ovum

zygote.

Spermatocytes.— When the male germ

cells reach the period of growth they are Fig. 19.-SCHEMA OF MATURATION OF Ovum.

END OF TELOPHASE OF Second Division where called spermatocytes of the first order, or the four descendants of oocyte I are the mature spermatocytes I, which correspond, morovum, with half, the original number of phologically, with oocytes I (Fig. 10). chromosomes, and three polar bodies.

The spermatocytes lie in the walls of the tubules of the testes or male sex glands, where their descendants become converted into spermatozoa.

They differ from the oocytes I in three important respects : (1) they have no protective membrane corresponding with the oolemma of the oocyte; (2) they are not enclosed in follicles; (3) the spermatocytes are not surrounded by definite encircling layers of cells similar to the cells of the stratum granulosum.

As the spermatocytes lie in the walls of the tubules of the testes they are intermingled with other cells, the supporting and nurse cells, amidst which they undergo their maturation divisions, and their descendants become embedded in the nurse cells, where they are converted into spermatozoa. To a certain extent, therefore, the nurse cells may be looked upon as corresponding with the cells of the ovular cumulus which surround the growing oocyte.

After it has reached its full growth each spermatocyte I, like each oocyte I, can produce only four descendants, and the descendants, as in the case of the oocyte I,

[graphic]
« PrécédentContinuer »