Infrared and Raman Spectroscopy: Principles and Spectral InterpretationElsevier, 13 juil. 2011 - 230 pages Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation, sampling methods, quantitative analysis, origin of group frequencies and qualitative interpretation using generalized Infrared (IR) and Raman spectra. An extensive use of graphics is used to describe the basic principles of vibrational spectroscopy and the origins of group frequencies, with over 100 fully interpreted FT-IR and FT-Raman spectra included and indexed to the relevant qualitative interpretation chapter. A final chapter with forty four unknown spectra and with a corresponding answer key is included to test the readers understanding. Tables of frequencies (peaks) for both infrared and Raman spectra are provided at key points in the book and will act as a useful reference resource for those involve interpreting spectra. This book provides a solid introduction to vibrational spectroscopy with an emphasis placed upon developing critical interpretation skills. Ideal for those using and analyzing IR and Raman spectra in their laboratories as well as those using the techniques in the field.
|
À l'intérieur du livre
Résultats 11-15 sur 36
... molecule since l is much greater than the size of most molecules. In terms of quantum mechanics, the IR absorption is an electric dipole operator mediated transition where the change in the dipole moment, m, with respect to a change in ...
... molecule, since the molecule acquires different vibrational energy ðnmÞ and the scattered photon now has different energy and frequency. As shown in Fig. 2.10 two types of Raman scattering exist: Stokes and anti-Stokes. Molecules ...
... molecule oscillate at the photon frequency. In (b) the molecular vibration can change the polarizability, a, which ... molecule at this same frequency, as shown in Fig. 2.11a. The polarizability a of the molecule has a certain magnitude ...
... molecule has no permanent dipole moment. Examples shown below include H2, CO2, and benzene and the rule of mutual exclusion holds. In a molecule with a center of symmetry, vibrations that retain the center of symmetry are IR inactive ...
... molecule such as water. These include those for a plane of symmetry, a two-fold rotational axis of symmetry, and an identity operation (needed for group theory) which makes no change. If a molecule is symmetrical with respect to a given ...
Table des matières
1 | |
7 | |
27 | |
Chapter 4 Environmental Dependence of Vibrational Spectra | 55 |
Chapter 5 Origin of Group Frequencies | 63 |
Characteristic Group Frequencies | 73 |
Chapter 7 General Outline and Strategies for IR and Raman Spectral Interpretation | 117 |
Chapter 8 Illustrated IR and Raman Spectra Demonstrating Important Functional Groups | 135 |
Chapter 9 Unknown IR and Raman Spectra | 177 |
Appendix IR Correlation Charts | 213 |
Index | 217 |
Autres éditions - Tout afficher
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation Peter Larkin Aucun aperçu disponible - 2017 |
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation Peter J. Larkin Aucun aperçu disponible - 2011 |